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Abstract—The frequent non-availability of an automated
oracle means that, in practice, checking software behaviour is
frequently a painstakingly manual task. Despite the high cost
of human oracle involvement, there has been little research
investigating how to make the role easier and less time-
consuming. One source of human oracle cost is the inherent
unreadability of machine-generated test inputs. In particular,
automatically generated string inputs tend to be arbitrary
sequences of characters that are awkward to read. This makes
test cases hard to comprehend and time-consuming to check.
In this paper we present an approach in which a natural
language model is incorporated into a search-based input data
generation process with the aim of improving the human
readability of generated strings. We further present a human
study of test inputs generated using the technique on 17 open
source Java case studies. For 10 of the case studies, the
participants recorded significantly faster times when evaluating
inputs produced using the language model, with medium to
large effect sizes 60% of the time. In addition, the study found
that accuracy of test input evaluation was also significantly
improved for 3 of the case studies.

Keywords-Search-Based Testing, Strings, Language Model,
Crowd-Sourced Human Study

I. INTRODUCTION

In many real cases, software behaviour must be checked
by a human. While recent work on test data generation
allows for the possibility of automatically generating inputs
to cover all the branches of a program, the outputs of a
software system must still be checked against those inputs
in order to assess that the system is functioning as intended.

However, conventional approaches to automatic test data
generation typically ignore the overheads of human effort
involved in manually checking the inputs produced. This
effort adds a cost to the testing process, referred to as
the human oracle cost [1], [2]. The traditional goal of
an automatic test input generator is the achievement of
structural code coverage only [3], [4], [5], [6], and not also
the simultaneous reduction of human oracle cost.

One source of human oracle cost is the difficulty of
reading machine-generated inputs. In particular, string values
generated by automatic test input generators often look
like arbitrary sequences of characters. This results in test
scenarios that are hard to interpret and test cases that are
time-consuming to manually evaluate.

In this paper, we apply a natural language model to
the automatic generation of string inputs, with the aim of

generating readable test values that are easy for humans
to comprehend. Language models have been used in a
variety of areas including natural language processing [7],
where one of their applications is to assist with automatic
translation [8], and in speech processing [9], where they are
used to choose between the possible outputs from a speech
recognizer. In software engineering, they have been used to
improve code completion in the Eclipse IDE [10].

A language model assigns a score to a string reflecting
the “likeness” of that string to those occurring in a natural
language. We show how this score can be used to form an
additional component of the fitness function used in search-
based structural test input generation. Once an input has been
found to cover a branch, the language model component
of the fitness function can be harnessed to improve string
inputs from the perspective of human readability, evolving
them from seemingly random combinations of characters to
strings that involve common letter sequences and character-
istics of comprehensible text.

We present an empirical study in which we evaluated
the capabilities of the language model test input generation
approach with human judgements. Programmers were in-
vited to evaluate tests cases for a series of 17 Java case
studies from open source projects. The study found that
test inputs generated by the language model approach took
significantly less time to evaluate for 10 case studies, with
medium to large effect sizes recorded in 6 cases. For 3
case studies, the accuracy of test input evaluation was also
significantly improved.

The contributions of this paper, therefore, are as follows:

1) A technique for incorporating a language model into
the automatic test input generation process for branch-
covering string inputs (Section III).

2) The results of a human study in which the language
model technique is compared with a conventional,
non-informed approach to generating branch-covering
test suites, revealing cases where human participants
were both faster and more accurate in making oracle
judgements (Sections IV and V).

We begin by describing the functioning of the language
model used in this paper, and how it is incorporated into the
search-based input generation process.



II. LANGUAGE MODELS

A statistical language model assigns a probability score to
a string that estimates the likelihood of that string occurring
in the language it models. A good language model for
English, for example, assigns higher probability scores to
strings that resemble well-formed words, such as “testing”,
and lower scores to strings that do not, e.g. “Qu5$-ua”.

Language models are widely used in natural language
and speech processing for a wide range of tasks, including
machine translation [8] and automatic speech recognition
[9]. The majority of applications use word-based language
models, which model the language as sequences of words. In
this paper, a character-based language model is used, where
the language is represented as a sequence of characters. The
same basic approach is used by both word and character-
based models. The explanation provided here, however, is
focused around the character-based approach later incorpo-
rated into test input generation in Section III.

Let cn1 be a sequence of n characters (c1, c2, ... cn). A
language model aims to assign a value to the probability
P (cn1 ). This can be decomposed using the chain rule of
probability, allowing the probability of each character ci to
be estimated based on the characters that preceded it in cn1 :

P (cn1 ) = P (c1)P (c2|c1)P (c3|c21)...P (cn|cn−1
1 )

=

n∏
i=1

P (ci|ci−1
1 ) (1)

where P (ci|ci−1
1 ) is the probability of character ci following

the sequence ci−1
1 .

A language model estimates these probabilities by analyz-
ing a corpus. The probability P (ci|ci−1

1 ) can be estimated
by identifying all occurrences of the string ci−1

1 to find the
proportion that are followed by ci. However, the number of
possible strings means that many of these sequences will not
be found, even in an extremely large corpus, making these
probabilities impossible to estimate directly. A language
with c possible characters has cn possible sequences of n
characters. For example, if we assume that there are 26
characters in English (i.e. ignoring case, punctuation and
whitespace) the number of possible 5 character sequences is
over 11 million.

Consequently language models approximate the proba-
bility of strings by combining the probabilities of shorter
sequences, for which more reliable probabilities can be
inferred from the corpus. One approach is to estimate the
probability of each character based only on the character
that immediately precedes it:

P (cn1 ) ≈
n∏

i=1

P (ci|ci−1) (2)

This type of language model is known as a bigram model.
However, even when using a bigram model some pairs
of characters will not be seen in large corpora, and in

Bigram Probability Source

te 0.08548796 Direct
es 0.10209079 Direct
st 0.17185259 Direct
ti 0.07612985 Direct
in 0.30709963 Direct
ng 0.15313497 Direct

score(“testing”) = 0.17665935

Bigram Probability Source

Qu 0.95987654 Direct
u5 0.00000009 Inferred
5$ 0.00000005 Inferred
$- 0.00074450 Inferred
-u 0.00247280 Direct
ua 0.02245566 Direct

score(“Qu5$-ua”) = 0.00079785

Figure 1. Computing language model scores for two strings. The word
“testing” receives a higher score than the string “Qu5$-ua”. For “testing”,
all bigram probabilities can be found directly in the corpus, whereas some
bigrams for “Qu5$-ua” are not present and are inferred from probabilities
computed for each individual characters of the bigram separately.

these cases the probabilities are estimated by combining the
probabilities of individual characters, i.e. P (ci), computed
using smoothing and back-off techniques (for more details,
the reader is referred to the references [9], [11]).

In general longer strings are less likely to occur than
shorter ones and language models assign them lower prob-
abilities. To avoid bias in favour of shorter strings the
probability generated by the language model is normalized
by taking the geometric mean, i.e. the score assigned to a
string, score(cn1 ), is computed as

score(cn1 ) = P (cn1 )
1
n (3)

Figure 1 shows the scores assigned by our bigram
language model to the strings “testing” and “Qu5$-ua”. The
SRILM toolkit [12] was used to learn the model and the
text used to train it was an electronic version of the classic
novel Moby Dick [13] freely available at Project Gutenberg
(http://www.gutenberg.org/ebooks/2701). This text contains
215,133 words and 1,235,150 characters, which is more than
adequate to train the language model.

III. INCORPORATING A LANGUAGE MODEL INTO
SEARCH-BASED TEST INPUT GENERATION

Search-based test input generation has been applied ex-
tensively to the generation of structural test data [3]. The
main feature of a search-based approach is the formulation
of a fitness function. The fitness function underpins the test
goal, rewarding inputs close to fulfilling the goal with good
fitness values, while punishing inputs that are far away with
weak fitness values. A metaheuristic search technique, such
as an evolutionary or local search algorithm [4], is used to
optimize the fitness function. The search favours exploration
around input values with the best fitness values – on the
assumption that they lie in the vicinity of inputs with even
better fitness – with the aim of finding inputs that lead to
the satisfaction of the current test goal of interest.

The conventional fitness function for generating inputs
to cover individual branches is concerned with the control
structure of the program and the values of variables at
decision points only. The fitness function is to be minimized,
with a zero fitness value representing the global optimum.



1 String toCamel(String str) {
2 StringBuffer sb = new StringBuffer();
3 boolean wasUnderline = false;
4 for (int i = 0; i < str.length(); i++) {
5 char c = str.charAt(i);
6 if (c == ’_’) {
7 wasUnderline = true;
8 continue;
9 }

10 if (wasUnderline) {
11 sb.append(Character.toUpperCase(c));
12 wasUnderline = false;
13 continue;
14 }
15 sb.append(Character.toLowerCase(c));
16 }
17 return sb.toString();
18 }

(4) i < str.length()

(6) c == ’_’TARGET MISSED
AL = 1
BD = norm(str.length() - i + K)
LM = 1

TARGET MISSED
AL = 0

BD = norm(Math.abs(’ ’ - c) + K)
LM = 1

TARGET EXECUTED
AL = 0

BD = 0

LM = 1 - lm score(str)

TRUEFALSE

TRUEFALSE

Figure 2. Fitness computation for the toCamel method and generation of a readable string that covers the true branch from node 6. The fitness function
contains the usual approach level (AL) and branch distance (BD) components (K is a positive constant set to 1 in this paper), along with an extra metric
from the language model (LM). LM is 1 until the branch is covered, at which point it assigns scores to the string str using lm score, the probability score
between 0 and 1 generated for str by the language model. The higher the value of lm score, the lower the value of LM, and the higher the similarity
str has with strings in the language.

The approach level (AL) scores how far down the control
dependency graph the input penetrated with respect to a
target branch. For example, with Figure 2 and execution of
the true branch at line 6, inputs that do not enter the loop
score 1, while inputs that reach line 6 score 0. Added to
the approach level is the normalized branch distance (BD)
metric, which scores how close the input was to taking the
alternate desired branch. Example calculations are shown in
the figure, and more details can be found in [3], [4], [14].

With this fitness function, the goal of the search is to
cover a particular branch with any input that can be found.
However, the inputs found tend to look random from a
human perspective, and the information encoded in string
inputs requires work to decipher due to arbitrary character
sequences. For example, “#qp}ˆbkJ’; ir9” was generated for
the toCamel method of Figure 2 during experiments reported
later in Section V. Due to the frequent lack of an automated
oracle, a human must often check that the outputs of a piece
of software match those expected for some generated input.
However, the harder the inputs are to comprehend, the more
time-consuming and error-prone the task is likely to be. The
toCamel method converts a program identifier string using
the under scoring style of joining words to the camelCase
format, where the first letter of each word (bar the first)
is a capital letter. The conversion process involves finding
each underscore in a string, removing it, and capitalizing
the character immediately after it. Thus the correct output
for “#qp}ˆbkJ’; ir9” is “#qp}ˆbkJ’;Ir9”. From a human
perspective, readable strings such as “my string” would be
preferred and should be automatically generated.

Our technique incorporates the language model described
in the last section into the fitness function for covering
individual branches. Language model probability scores can
be viewed as a measure of “likeness” or similarity of a
string to natural words. As such, the probability score forms

an ideal output of a fitness function, since it can be used
to guide the search towards more natural and inherently
readable strings. Language model scores begin to have an
impact on fitness once a branch is covered, as shown in
Figure 2. Before an input has been found to cover a branch,
the language model fitness component (LM) is always 1, and
is added to AL and BD. Once the target branch is covered
– the point at which the search would normally terminate
– the search instead continues to optimize the input for
language model score. With the AL and BD scores both
0, the LM component returns 1− lm(str), where str is the
string input and lm(str) is the language model function that
returns a probability score for the string str. In other words,
lower values of LM reflect “better” strings. If the search
makes a “move” to improve the readability of the string,
but the new string now fails to cover the branch, the fitness
function punishes it by scoring for the approach level and
branch distance elements again, while the LM score reverts
back to 1.

Using LM in the fitness computation means that it is
almost impossible for the search to reach the global opti-
mum, and so the search must always be stopped at some
suitable fitness evaluations limit. (In this paper, 100,000
fitness evaluations is used as the termination criterion.)

Our work seeks to compare the conventional approach,
which does not include the LM component (i.e. LM is
essentially always 0 for the fitness function described in
Figure 2), against the language model approach, which
includes the LM metric. In contrast to “#qp}ˆbkJ’; ir9”,
generated by the conventional approach for the true branch
from line 6, the language model approach generated strings
such as “inererof yo” in our experiments. The hypothesis
that strings such as the latter are easier to read and quicker
for humans to check is tested in an empirical study, detailed
in the next section.



IV. EXPERIMENTAL STUDY METHODOLOGY

The primary aim of our empirical study was to discover
whether automatically generated branch-covering string
inputs were evaluated more quickly and accurately by
humans when those strings had been generated with the
assistance of a language model. We begin by detailing the
case studies used as a basis for generating string inputs to
be assessed in the human evaluation.

A. Case Studies
The case studies used in the empirical evaluation were

Java methods with string arguments taken from 17 open
source projects. A summary can be found in Table I. Since
each case study would be the subject of human evaluation,
it was required that the operation of each Java method be
amenable to being understood from no more than a para-
graph of text. The primary reason for avoiding complicated
methods was to avoid so-called fatigue effects and having
participants tire quickly during progression of the study,
potentially influencing results or increasing the number of
unusable responses. On the one hand, therefore, the methods
tend to be relatively simple in nature with few branches. On
the other hand, this is reflective of good Java programming
style, where short methods are best practice [15].

The projects and methods outlined in Table I are now
described in more detail.

Bots’n’Scouts is a multiplayer game, from which one
method was used – lesseqString. The method checks whether
the first string argument a is lexicographically less than or
equal to another string argument b, returning true if so,
otherwise false.

CodeHaggis is an Eclipse plugin with code generation
capabilities. One method was used in the study, toCamel,
introduced in the last section as the subject of Figure 2.

Daikon is an invariant generator, well-known to the
software engineering research community. Two methods
were used. getClassName extracts a Java class name from
a string, based on the location of the last dot character.
protectQuotations takes a string and places a backslash in
front of each quotation mark.

Germoglio is a compilation of solutions to various
programming problem contests. One method was used,
translate, which translates a word string to “Pig Latin”. If
the first letter of the string is not a vowel, it is appended to
the end of the string. Then – regardless of the first character
– the string is appended with “ay”. Thus “input” becomes
“inputay” and “string” becomes “tringsay”.

The project Jake manages information about online aca-
demic resources. One method was used, isValidUsername,
which checks whether its string argument is at least three
characters long, and consists of alphanumeric characters
only.

JavaMail is the email and messaging API for use with
Java. The isSimpleAddress method checks whether the string

argument is a valid URL address, i.e. is free of certain
forbidden characters including brackets, square brackets,
semi-colons etc. The method isGroup checks whether a
string is a group address, according to RFC822, i.e. it
contains a colon and ends with a semi-colon.

JOX manages data transfer between XML documents and
Java beans. The stripName method was used, which returns
the lowercase version of its argument, with dash, underscore,
dot, and colon characters removed.

Muffin is a project for filtering Internet pages. The con-
tainsChar method used in the study tests if a character
argument is present in another supplied string argument.

OpenJDK is the well-known open-source implementation
of the Java platform. The method isHostNameLabel takes
a string as an argument, and returns true if the string is
a valid host name – a string of which the first and the
last characters are alphanumeric. The remaining characters
may be alphanumeric or hyphens. composeName takes two
strings name and prefix as arguments. If one of name

or prefix are null or empty, the method returns the non-
null/non-empty argument, else the method returns prefix

appended by a forward slash followed by name.
PuzzleBazar is a web-based platform for uploading and

playing puzzles. One method was used in the study, which
validates email address strings.

Rife is a Java web development framework. The capitalize
method takes a string and converts the first character to upper
case if it is a lower case letter. encodeClassname takes a
string and converts it to a valid Java class name, by replacing
any characters that are not letters, digits or underscores
with underscores. needsUrlEncoding inspects whether or not
a string argument requires encoding by checking whether
certain characters are present.

Finally, Subsonic is a media streaming application. The
containsIgnoreCase method checks whether a substring is
present in another string, ignoring casing differences.

For the purposes of increasing the number of branch
targets for input generation, the return statements of the
isSimpleAddress, isGroup, containsIgnoreCase methods, in-
volving the evaluation of boolean expressions, were modified
(without changing the method’s functionality) to “if” state-
ments containing the expression with corresponding “return
true” and “return false” parts.

Each Java method can be placed into one of two cat-
egories – string validation and string conversion routines.
Validation routines take a string and return either true
or false, and include containsChar, containsIgnoreCase,
isGroup, isHostNameLabel, isSimpleAddress, isValidUser-
name, lesseqString, needsUrlEncoding, and validateEmail.
Conversion routines take one or more string inputs and return
some string output. These include capitalize, composeName,
encodeClassName, getClassName, protectQuotations, strip-
Name, toCamel and translate.



Table I
CASE STUDIES

Project Class Methods used (No. of branches)

Bots’n’Scouts (http://botsnscouts.sourceforge.net) de.botsnscouts.util.H lesseqString (2)
CodeHaggis (http://sourceforge.net/projects/codehaggis) net.sf.haggis.actions.stringConverter.StringConverter toCamel (6)
Daikon (http://pag.csail.mit.edu/daikon) daikon.split.SplitterJavaSource getClassName (2), protectQuotations (4)
Germoglio (http://code.google.com/p/germoglio-programming) P492 translate (2)
Jake (http://sourceforge.net/projects/jake) org.jakedb.UserManager isValidUsername (6)
JavaMail (http://www.oracle.com/technetwork/java/javamail) javax.mail.internet.InternetAddress isSimpleAddress (2), isGroup (4)
JOX (http://sourceforge.net/projects/jox) com.wutka.jox.JOXBeanOutput stripName (6)
Muffin (http://muffin.doit.org) sdsu.util.SimpleTokenizer containsChar (4)
OpenJDK (http://openjdk.java.net) com.sun.jndi.dns.DnsName isHostNameLabel (4)

com.sun.jndi.toolkit.url.GenericURLContext composeName (4)
PuzzleBazar (http://code.google.com/p/puzzlebazar) com.puzzlebazar.client.util.Validation validateEmail (24)
Rife (http://rifers.org) com.uwyn.rife.tools.StringUtils capitalize (4), encodeClassname (2),

needsUrlEncoding (6)
Subsonic (http://www.subsonic.org) net.sourceforge.subsonic.service.SearchService containsIgnoreCase (4)

B. Generation of Inputs

The first phase of the experiments involved generating
test inputs for each of the methods, using the conventional
approach and the language model informed approach, as
described in Section III. Full branch coverage of each
method was attempted using a simple (1+1) Evolutionary
Algorithm (EA). A (1+1) EA maintains one test input and
modifies it through random changes called mutations. If the
modified input scores a better fitness than the original, the
original is replaced with the modified input. Inputs were
generated using the IGUANA toolset [16]. IGUANA is a
tool for C programs, but was easily adapted to Java in this
instance, since all the methods were static; and if not static,
stateless. That is, there was no requirement to generate a
method call sequence other than the simple invocation of
a constructor. The representation of strings for the search
was an array of characters, s, of length 30, followed by
an additional integer l, for controlling string length. For
example, if l = 5, the first five characters of s were used to
form a string of length 5. The upper bound of 30 was chosen
in order to guarantee feasibility of as many branches as
possible over all the case studies employed in the evaluation.
In practice, this value could be adjusted if necessary by the
tester. Each character of s was in the ASCII printable range
of 32–126. Mutations were made at a probability of 1

l+1
using uniform mutation.

The search for test data involving each branch of each
method was given up to 100,000 fitness evaluations. The
conventional approach may terminate before this limit if test
data is found to cover the branch, whereas the language
model approach continues to optimize the branch-covering
string input to achieve the best language model score. Due
to the stochastic nature of the search algorithm, the search
with each approach and Java method branch was repeated 30
times using an identical set of random seeds. This resulted
in both approaches covering exactly the same branches,

since the search using the language model is identical to
the conventional approach up to the coverage of the target
branch. During test data generation, 100% branch coverage
was achieved for all methods, except for one infeasible
branch in validateEmail.

C. Human Test Input Evaluation Study

The human study required participants to have expertise
in the Java language and complete an online questionnaire
involving one of the case study methods. The participant was
presented with the method’s signature and a paragraph of
text describing the operation of the method. (Supplementary
information was additionally presented for the lesseqString
method, in the form of ASCII codes.)

The participant was then required to answer 8 questions
based on a selection of string inputs generated for that case
study, drawn at random from the repetitions of searches
performed as described in the last section. That is, each set
of 8 questions featured a mixture of string inputs generated
for any of branches of the case study using either the two
approaches – conventional or language model.

In order to answer a question, the participant was simply
required to type the expected output for the Java method.
For a method in the string validation category, this would
be a boolean value (i.e., the user would be expected to
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Figure 3. Evaluating string inputs in the online questionnaire system



enter “true” or “false”). For a string conversion method,
the string return value was required. The time taken from
the presentation of the question to the user clicking “next”
and having entered their response was recorded, with the
response logged internally as “correct” if it matched the
actual return value of the method. In order to familiarize the
participant with the case study, the first two questions were
designated as practice questions, the answers to which were
not used in the analysis presented in the next section. Figure
3 shows a screenshot of the questionnaire with an example
question. Once a participant had completed a questionnaire
for a Java method, they were not allowed to go back and
change any answers or re-take with different questions.

Participants were continuously recruited via the Crowd-
Flower (http://crowdflower.com) crowdsourcing website un-
til 250 answers (excluding those to practice questions) had
been obtained to questions involving strings generated by
each of the two input generation approaches for each Java
method. CrowdFlower is one of a number of websites
in which tasks or jobs can be uploaded for completion
by workers for a fee. Crowdsourcing websites have been
used in a number of other software engineering empirical
studies, including the investigation of code smells [17], fault
localization accuracy [18] and patch maintainability [19]. It
has also been used to evaluate human linguistic annotations
[20] and Wikipedia article quality [21].

The use of crowdsourcing provides access to a far wider
set of participants than would be possible if participants had
been identified through personal contacts (such as students
or industrial practitioners) and allows judgements to be
obtained from them far more quickly than would otherwise
be the case. However, control over the selection of study
participants is limited and, while we did require participants
to have expertise in Java, expertise levels were indicated by
the participants themselves. An additional problem is the
possibility of participants trying to “game the system” for
money by entering rushed and thoughtless responses.

However, these issues can be overcome by analyzing a
subset of participants based on an independent metric, a
method found to work well in other crowd-sourced human
studies [18], [19], [20], [21]. Answers from participants who
did not answer 50% or more of the test input questions
were automatically discarded and did not count towards the
target 250 answers being collated for each Java method and
test input generation approach. This removed frivolously-
entered responses from the analysis and the need to trust
participants’ assessments of their own level of ability. (The
test input evaluation questions were not intended to chal-
lenge the participant’s level of ability, and a programmer of
even a basic level of competence should have been able to
answer the majority of the questions accurately.) As each
questionnaire involved a random selection of string inputs
generated by both types of approach, this process does not
bias our results towards one particular approach or the other.

D. Research Questions

The research questions to be answered by the human
empirical study are as follows:
RQ 1. String input generation using the language
model. The use of the language model as part of the fitness
function is expected to improve the language model scores
of the strings generated. Does it, and by how much?
RQ 2. Accuracy of judgements. Is there an improvement
in the accuracy of evaluation of strings generated using
the language model? That is, do the participants enter the
correct expected outputs for a string input produced using the
language model more frequently than for strings generated
without the use of the language model?
RQ 3. Time to make judgements. Is there a decrease
in time for evaluating strings produced using the language
model? That is, do human participants enter the correct
expected outputs for strings generated using the language
model more quickly than those generated without the use of
the language model?

V. EXPERIMENTAL RESULTS

RQ 1. String input generation using the language model.
Figure 4 shows the impact of the language model on

average probability scores of strings generated using the
language model approach and the non-informed conven-
tional approach. The chart shows that the scores for “unim-
proved” strings generated using the conventional approach
are low – as would be expected – and that the evolutionary
algorithm can indeed leverage the language model to im-
prove strings to higher language model scores. Probability
scores were at the very least doubled, and in the best cases
improved by several orders of magnitude.
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Figure 4. Average language model scores for strings generated using the
conventional search-based approach to test input generation compared to
those generated with the aid of a language model.



Table II
AVERAGE AND MAXIMUM NUMBER OF FITNESS EVALUATIONS FOR

COVERING THE BRANCHES OF EACH JAVA METHOD

Case Study Av. Evals Max. Evals

capitalize 5,101.9 5,323
composeName 9,722.8 10,653
containsChar 78.8 86
containsIgnoreCase 6,564.9 7,456
encodeClassname 3,300.3 4,906
getClassName 279 279
isGroup 7,941.9 10,955
isHostNameLabel 243.3 254
isSimpleAddress 153.1 292
isValidUserName 934.1 1,167
lesseqString 196.8 303
needsUrlEncoding 7,670.8 12,179
protectQuotations 554.4 846
stripName 3,952.8 5,186
toCamel 395.8 618
translate 956.7 1,061
validateEmail 50,213.6 71,285

Java methods experiencing high language model scores
for their string inputs, such as containsChar and lesse-
qString, were generally those involving few constraints
regarding the presence of special types of character that do
not form elements of natural words in English. Strings for
validateEmail received the lowest language model score on
average. These results may also be explained in terms of the
“budget” of fitness evaluations available for improving string
readability once a branch had been covered. The search for
string inputs for each branch was terminated after 100,000
evaluations, but if a large number of these evaluations were
spent covering the branch, few further evaluations would be
spent post-branch coverage improving readability using the
language model. Table II shows the average and maximum
number of fitness evaluations required for covering branches
for each case study. The average number of evaluations for
the majority case studies was under 10,000 – leaving a
budget of at least 90,000 further evaluations for improv-
ing string readability. The branches of containsChar and
lesseqString were covered in fewer than 200 evaluations on
average – leaving most of the 100,000 fitness evaluations
budget for improving readability. However, validateEmail
consumed just over 50,000 on average, leaving a smaller
(but still considerable) number of around 50,000 evaluations
for improving readability.

RQ 2. Accuracy of judgements. The human study requires
participants to enter the expected output for each input they
are presented with. The input string could have been gener-
ated using the language model approach or the conventional,
non-informed approach. In total, 250 answers were collated
involving strings generated by each of the two test input
generation approaches for each Java method (i.e., 500 for
each Java method in total). Table III shows the percentage of
inputs for each approach for which the participant correctly
entered the output for the case study method in question. The

Table III
PERCENTAGE OF CORRECT JUDGEMENTS

The percentage of correct judgements for each Java method. A correct judgement is
where the participant correctly entered the output for the case study given a string
input produced by either the language model approach (Lang.) or the conventional,
uninformed, approach (Conv.). A p-value in bold face indicates significance at a
confidence level of 95% using Fisher’s exact test.

Case Study Lang. (%) Conv. (%) p-value

capitalize 74.4 79.6 0.635
composeName 80.4 82.0 0.894
containsChar 94.0 90.0 0.747
containsIgnoreCase 85.6 84.8 0.948
encodeClassname 97.2 74.8 0.048
getClassName 83.6 80.4 0.790
isGroup 95.6 96.8 0.949
isHostNameLabel 87.6 86.4 0.948
isSimpleAddress 94.4 90.4 0.747
isValidUsername 87.2 94.0 0.604
lesseqString 78.4 78.0 1.000
needsUrlEncoding 95.6 96.8 0.949
protectQuotations 88.0 84.8 0.793
stripName 90.0 59.2 0.003
toCamel 90.4 59.2 0.003
translate 88.4 84.8 0.793
validateEmail 72.0 89.6 0.108

table shows no significant difference between the language
model approach and conventional approach for the majority
of case studies, using Fisher’s exact test on the numbers of
questions correctly answered at a confidence level of 95%.
No significant difference was found for any of the string
validation routines. However, three of the string conversion
methods did reveal a significant improvement when using
the language model – encodeClassName, stripName and
toCamel.

In answer to this research question, therefore, the evidence
suggests that the language model can improve the accuracy
of test input evaluation for certain types of case study. There
was no evidence to suggest that inputs generated with the
language model approach hindered accuracy in any of the
cases, i.e. it did not significantly reduce accuracy for any of
the methods under consideration.

RQ 3. Time to make judgements. The time for participants
to enter the outputs for each input was logged. Table IV
shows mean times for all judgements made by participants
as well as mean times for correct judgements only (i.e. where
the participant entered the correct output for the input).
Statistical significance was tested for using the Wilcoxon
rank-sum test at a confidence level of 95%. For both views
of the data (mean times for all answers and mean times
for correct answers only), significantly lower times were
recorded for 10 of the 17 Java methods for inputs generated
using the language model approach.

The computation of effect sizes, using Vargha and De-
laney’s Â12 statistic [22], is recorded in Table IV. The
guidelines presented in Vargha and Delany’s paper class an
effect size as large, medium or small as values that are less



Table IV
TIME TO MAKE JUDGEMENTS

Mean times taken for participants to make judgements on inputs for each of the Java
methods using the language model (Lang.) and the uninformed conventional approach
(Conv.). Part (a) shows mean times in seconds for judgements on all test cases, whereas
part (b) is an average for correct judgements only (i.e. where the participant correctly
entered the output for the case study in question). A p-value in bold face indicates
significance at a confidence level of 95% using the Wilcoxon rank-sum test with the
two sets of times obtained with the language model approach and the conventional
approach respectively. For the Â12 statistic, * indicates a small effect size , ** a
medium effect size and *** a large effect size, according to the guidelines of Vargha
and Delaney [22].

(a) All judgements

Case Study Lang. (s) Conv. (s) p-value Â12

capitalize 14.1 16.6 0.820 0.506
composeName 20.6 21.7 0.596 0.514
containsChar 9.1 14.3 < 0.001 *** 0.279
containsIgnoreCase 10.4 10.2 0.877 0.496
encodeClassname 15.1 40.3 < 0.001 *** 0.100
getClassName 10.5 19.5 < 0.001 ** 0.328
isGroup 6.1 6.8 0.006 * 0.429
isHostNameLabel 6.9 8.9 < 0.001 * 0.414
isSimpleAddress 7.9 13.9 < 0.001 ** 0.350
isValidUsername 6.2 5.5 0.946 0.502
lesseqString 14.0 24.0 < 0.001 * 0.407
needsUrlEncoding 8.6 8.8 0.114 0.541
protectQuotations 13.1 15.8 < 0.001 * 0.380
stripName 20.4 42.7 < 0.001 *** 0.194
toCamel 16.4 33.6 < 0.001 *** 0.193
translate 15.5 25.6 0.089 0.456
validateEmail 9.8 7.5 0.136 0.539

(b) Correct judgements only

Case Study Lang. (s) Conv. (s) p-value Â12

capitalize 11.6 12.1 0.333 0.529
composeName 19.2 19.9 0.579 0.516
containsChar 9.2 14.6 < 0.001 *** 0.279
containsIgnoreCase 10.3 9.4 0.707 0.511
encodeClassname 15.0 35.8 < 0.001 *** 0.089
getClassName 10.8 16.8 < 0.001 ** 0.329
isGroup 6.1 6.6 0.014 * 0.435
isHostNameLabel 7.0 9.0 0.005 * 0.422
isSimpleAddress 7.4 13.6 < 0.001 ** 0.335
isValidUsername 6.2 5.3 0.756 0.508
lesseqString 13.7 26.8 < 0.001 * 0.367
needsUrlEncoding 8.8 8.9 0.124 0.541
protectQuotations 13.0 15.7 < 0.001 * 0.371
stripName 20.3 45.0 < 0.001 *** 0.134
toCamel 16.4 32.9 < 0.001 *** 0.178
translate 15.8 25.3 0.552 0.483
validateEmail 8.4 7.5 0.284 0.531

than 0.29, 0.36 and 0.44 respectively. The case studies con-
tainsChar, encodeClassName, stripName and toCamel all
involved large effect sizes – the latter three having recorded
significantly improved results for accuracy in the answer
to the previous research question. A further 2 case stud-
ies experienced medium effect sizes, isSimpleAddress and
getClassName, while the effect size was small for isGroup,
isHostNameLabel, lesseqString and protectQuotations.

The remaining 7 case studies experienced no signifi-
cant difference. The methods capitalize, composeName and

translate do not require their string inputs to be fully
comprehended to make judgements about outputs, which
may explain why no significant difference was found in
terms of evaluation times for the two approaches. capitalize
merely requires the tester to examine the first character
of the string. composeName merely outputs one or other
of its arguments or the concatenation of both, with again,
little need for the two string arguments to actually be read;
while translate, in a similar style to capitalize, just requires
examination of the first character of the string.

An analysis of the test inputs generated for
containsIgnoreCase revealed that both approaches generated
an empty string for the second string argument the majority
of the time. containsIgnoreCase tests for the presence of
the second string argument in the first, and so an empty
string for the second argument leads to the method trivially
returning false – accounting for a lack of difference in
times recorded for the language model and conventional
approaches.

Finally, the test data generated for isValidUsername,
needsUrlEncoding and validateEmail seemed to present
more straightforward tasks for the human participants for
which the usage of a language model was incapable of
producing significant differences.

VI. THREATS TO VALIDITY

Although the results of our empirical evaluation show that
the accuracy and time for humans to evaluate string inputs
generated using the language model are improved in many
cases, there are several threats to validity associated with
our study, and these are detailed as follows.

The first threat concerns a potential bias in the selection
of case studies, such that the patterns observed in our study
may not generalize in practice. In order to mitigate this,
code was taken from open source projects developed by real
programmers. Secondly, a number of methods with string
arguments were used, so as to sample different character-
istics of functionality involving string inputs. Section IV-A
discussed these issues in more detail. A further potential
threat involves the text used to train the language model.
While our text contained an adequate number of character
combinations for training such a model, the use of different
training texts may result in different (and possibly improved)
results. Details regarding the training text were given in
Section II.

One well-known threat to validity in human studies is the
“learning” or “training” effect, where participants perform
significantly worse at the beginning of the study due to
unfamiliarity with the task, including, for our empirical
evaluation, an unfamiliarity with the case study on which the
proceeding questions were based. One step taken to mitigate
this effect was to have two practice questions at the start
of the questionnaire. Converse to the training effect is the



“fatigue effect”, which refers to the human trait of tiring
towards the end of a long study, influencing results collated
from the end of the process. Steps taken to mitigate the
fatigue effect included keeping the form of the questions
simple and limiting the number of questions to 8. The data
we collated indicated that on average, each participant spent
just under 3 minutes on a questionnaire, indicating that our
study was not particularly onerous and unlikely to be subject
to fatigue effects. However, the main step to remove any
bias from learning and fatigue effects was to randomize the
questions. That is, the ordering of the questions was not
fixed such that one of the techniques being studied was more
exposed to any potential learning or fatigue effects than the
other. The test inputs that formed the basis of each question
were selected at random from a large pool of inputs, and
these were selected at random from the overall set of inputs
generated for each stochastic approach. These issues were
discussed further in Section IV-C.

Another source of bias concerns the use of the
CrowdFlower crowdsourcing website, and the selection of
participants, which was not under our control. CrowdFlower,
and other crowdsourcing platforms like it, are open to users
mis-reporting expertise levels or performing tasks frivolously
in order to earn money quickly. This issue was discussed
extensively in Section IV-C, where we described the usage
of a subset of only the participants who answered 50% or
more of the test input questions correctly. The analysis of
subsets of participants based on an independent metric has
been shown to be a successful tactic in human studies of
this nature by other authors [18], [19], [20], [21].

Finally, significance was tested for using Fisher’s exact
test and the Wilcoxon rank-sum test, while effect size was
tested for using Vargha and Delaney’s Â12 statistic. These
are all non-parametric tests, which do not require the need to
make or test assumptions about the normality of the sample
means, avoiding the introduction of further potential sources
of error into the study.

VII. RELATED WORK

There has been much attention devoted to the problem of
automatic structural test data generation, including search-
based testing [3], [4] and dynamic symbolic execution [5],
[6] – an improvement to symbolic execution techniques
originally proposed in the 1970s [23]. There has also been
work in the search-based testing, dynamic symbolic execu-
tion and constraint-solving literature devoted to the problem
of generating string inputs, e.g. [24], [25], [26], [27], [28].
However, these techniques do not take into account human
readability of the strings generated.

McMinn et al. [29] and Shahbaz et al. [30] source suit-
able string inputs from Internet web pages for commonly-
available string types such as email addresses. Wherever
possible, this method should be used, since Internet web

page content tends to be produced by humans, and the string
values found tend to be realistic and readable. However,
the technique is reliant on the programmer using identifiers
that contain useful keywords for web searches so that the
required values can be found. Furthermore, the string types
themselves may encode low level information – as with
many of the case studies used in this paper – that is not easily
found on the web. In these circumstances, an alternative
approach needs to be taken, and that is the purpose behind
using a language model presented in Section II.

Checking test inputs by hand is a laborious and time-
consuming task, yet only a few works have considered
how to generate realistic test cases in general that make
the job for the human tester easier. McMinn et al. [2]
proposed the seeding of human-supplied test cases into the
first stage of a search-based approach, so that the search
is injected with an element of “realism” originating from
the real testers themselves. Other approaches to improve
realism of machine-generated test inputs include that of
Bozkurt and Harman [31], who proposed a testing approach
for service-oriented software in which the real outputs of
one service (e.g., real ISBNs for a publication) are used as
inputs for another. Related to these works is that of Fraser
and Zeller [32], who embodied elements of realism in test
cases consisting of Java method call sequences by biasing a
search-based approach to common usage patterns of classes
found in open source repositories.

Aside from individual test inputs, a further means of
reducing oracle cost is to reduce the number of test cases
in a test suite. Traditionally this has been applied as a post-
processing step to an existing test suite, e.g. [33]. However,
there has been recent work in search-based testing that
has sought to combine test input generation and test suite
reduction into one phase to produce smaller test suites, for
example the work of Harman et al. [1], Ferrer et al. [34]
and Fraser and Arcuri [35] with the EvoSuite tool.

VIII. CONCLUSIONS, DISCUSSION AND FUTURE WORK

This paper has presented an approach to automatic string
input generation where the strings are not only optimized
for test coverage but also according to a language model,
in order to improve human readability. The paper showed,
through empirical experiments involving human participants,
that the string inputs produced are quicker to evaluate in
several cases, and in certain cases, the accuracy of test input
evaluation with respect to outputs is also improved. Since
automated oracles are frequently unavailable in software
engineering practice, this work therefore has an important
bearing on lowering the costs of human involvement in the
testing process as a manual oracle.

Our technique improves readability of strings without
weakening the test adequacy criterion. However, for non-
stringent criteria like branch coverage (as used our study),



where several inputs may execute a branch, the use of less
readable strings may be more effective at exposing corner
cases and discovering flaws in an implementation. In this
case, the use of a language model may represent a trade-off
for a tester. Given a certain time budget in which to perform
testing, readable inputs may be preferred in order to reduce
oracle checking time and thus increase the number of test
cases that may be considered. Given unlimited time, more
faults may be found with strings produced without the aid
of a language model.

Further work needs to establish whether readable inputs
are less likely to reveal flaws and, if so, what trade-offs
are involved in terms of time spent versus faults found.
Further work is also required to study the types of texts
used to train the models that result in improved readability of
strings produced and their potential effects on fault-finding
capability. For example, certain types of text may be more
suitable for certain domains of programs. Finally, additional
work is also required to empirically evaluate different search
algorithms and fitness functions involving language models,
so that even better probability scores can be obtained for
string test data.

ACKNOWLEDGEMENTS

The authors would like to thank Chris Wright for useful
discussions, and also the anonymous referees for several
useful comments.

This work was funded by the EPSRC, grant no.
EP/I010386: “RE-COST” (REducing the Cost of Oracles for
Software Testing).

REFERENCES

[1] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo, “Optimizing
for the number of tests generated in search based test data generation with
an application to the oracle cost problem,” International Workshop on Search-
Based Software Testing (SBST 2010), pp. 182–191.

[2] P. McMinn, M. Stevenson, and M. Harman, “Reducing qualitative human oracle
costs associated with automatically generated test data,” International Workshop
on Software Test Output Validation (STOV 2010), pp. 1–4.

[3] P. McMinn, “Search-based software test data generation: A survey,” Software
Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–156, 2004.

[4] M. Harman and P. McMinn, “A theoretical and empirical study of search-
based testing: Local, global and hybrid search,” IEEE Transactions on Software
Engineering, vol. 36, pp. 226–247, 2010.

[5] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated Random
Testing,” ACM SIGPLAN Notices, vol. 40, no. 6, pp. 213–223, June 2005.

[6] N. Tillmann and J. de Halleux, “Pex – white box test generation for .NET,”
Tests and Proofs (TAP 2008), pp. 134–153.

[7] H. Manning and H. Schütze, Foundations of Statistical Natural Language
Processing. Cambridge, MA: MIT Press, 1999.

[8] A. Lopez, “Statistical machine translation,” ACM Computing Surveys, vol. 40,
no. 3, pp. 8:1–8:49, 2008.

[9] D. Jurafsky and J. Martin, Speech and Language Processing, 2nd ed. Pearson,
2009.

[10] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness
of software,” International Conference on Software Engineering (ICSE 2012),
pp. 837–847.

[11] S. Katz, “Estimation of probabilities from sparse data for the language model
component of a speech recognizer,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 35, no. 5, pp. 400–401, 1987.

[12] A. Stolcke, “SRILM – an extensible language modeling toolkit,” in Interna-
tional Conference on Spoken Language Processing, pp. 257–286, 2002.

[13] H. Melvile, Moby Dick. Harper and Brothers, 1851.

[14] A. Arcuri, “It does matter how you normalise the branch distance in search
based software testing,” International Conference on Software Testing, Verifi-
cation and Validation (ICST 2010), pp. 205–214.

[15] “Android code style guidelines, http://source.android.com/source/code-
style.html#write-short-methods.”

[16] P. McMinn, “IGUANA: Input generation using automated novel algorithms. A
plug and play research tool,” Department of Computer Science, University of
Sheffield, Tech. Rep. CS-07-14, 2007.

[17] K. T. Stolee and S. Elbaum, “Exploring the use of crowdsourcing to support
empirical studies in software engineering,” International Symposium on Em-
pirical Software Engineering and Measurement (ESEM 2010).

[18] Z. P. Fry and W. Weimer, “A human study of fault localization accuracy,”
International Conference on Software Maintenance (ICSM 2010), pp. 1–10.

[19] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch maintainability,”
International Symposium on Software Testing and Analysis (ISSTA 2012), pp.
177–187.

[20] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng., “Cheap and fast – but is it
good?: evaluating non-expert annotations for natural language tasks,” Empirical
Methods in Natural Language Processing. Association for Computational
Linguistics, pp. 254–263, 2008.

[21] A. Kittur, E. H. Chi, and B. Suh, “Crowdsourcing user studies with mechanical
turk,” SIGCHI conference on Human Factors in Computing, pp. 453–456, 2008.

[22] A. Vargha and H. Delaney, “A critique and improvement of the CL common
language effect size statistics of McGraw and Wong,” Journal of Educational
and Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[23] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT – A formal system
for testing and debugging programs by symbolic execution,” International
Conference on Reliable Software, pp. 234–244, 1975.
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