
A Theoretical Runtime and Empirical Analysis of Different
Alternating Variable Searches for Search-Based Testing

Joseph Kempka
Dept. of Computer Science

University of Sheffield
Sheffield S1 4DP, UK

Phil McMinn
Dept. of Computer Science

University of Sheffield
Sheffield S1 4DP, UK

Dirk Sudholt
Dept. of Computer Science

University of Sheffield
Sheffield S1 4DP, UK

ABSTRACT
The Alternating Variable Method (AVM) has been shown to be
a surprisingly effective and efficient means of generating branch-
covering inputs for procedural programs. However, there has been
little work that has sought to analyse the technique and further im-
prove its performance. This paper proposes two new local searches
that may be used in conjunction with the AVM, Geometric and Lat-
tice Search. A theoretical runtime analysis shows that under certain
conditions, the use of these searches is proven to outperform the
original AVM. These theoretical results are confirmed by an empir-
ical study with four programs, which shows that increases of speed
of over 50% are possible in practice.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

Keywords
Search-based software engineering, test data generation, local
search, runtime analysis, theory

1. INTRODUCTION
First proposed by Korel [8], the Alternating Variable Method

(AVM) is a simple local search strategy has been shown to be
surprisingly effective for covering branches of procedural pro-
grams. In a recent empirical study by Harman and McMinn with
a range of C programs, the AVM was able to cover the majority of
branches faster than a Genetic Algorithm [6]. This suggests that
the underlying fitness landscape for covering individual program
branches is relatively simple most of the time, with more “heavy-
weight” population-based approaches like Genetic Algorithms only
required in a minority of cases [11]. Despite this, there has been
relatively little work devoted to analysing and improving the per-
formance of the AVM technique.

The AVM can be regarded as a general framework in which a
local search strategy is applied to each individual input vector vari-
able in turn. In this paper, we view the local search strategy to be
a component of the overall framework that may be substituted for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

another. The original AVM applied an accelerated hill climb that
we refer to as Iterated Pattern Search (IPS), where “exploratory”
moves in a direction of fitness improvement are proceeded by larger
“pattern” steps in the same direction. In this paper, we propose
to replace IPS with two new approaches for exploring individ-
ual dimensions of the input vector—Geometric Search and Lattice
Search. Geometric and Lattice Search are elimination searches that
are able to find the optimum of a one dimensional function that is
unimodal on a given interval. They work by comparing the fitness
values of two points at predetermined positions, using the result to
select a new but smaller sub-range. The algorithm iterates until it
is left with one point. Whereas Geometric Search splits the range
in two by comparing the middle two positions, Lattice Search com-
pares points that are offset by Fibonacci numbers.

We examine all three variants of the AVM theoretically and
empirically. While prior theoretical runtime analyses of the origi-
nal AVM with IPS involved specific programs and branches [1, 2],
we furnish a more general result, proving that for all unimodal
functions Geometric and Lattice Search are faster than IPS, when
used in the framework of AVM. In a more general sense, Geomet-
ric and Lattice Search converge faster to local optima than IPS.
These theoretical results are complemented by an empirical study
on open source programs. On most branches our new local searches
perform significantly better than IPS. This includes unimodal land-
scapes, in agreement with our theory, as well as non-unimodal ones,
where the assumptions of our theory are not met. This indicates that
faster convergence to local optima is beneficial on a broad range of
instances. The only departure from this pattern was found for one
complex landscape of a type for which—as observed in prior stud-
ies [6, 11]—a Genetic Algorithm is significantly better than AVM.

The contributions of this paper are therefore as follows:

1. Two new input variable search strategies for use with the
AVM, Geometric Search and Lattice Search (Section 5).

2. A theoretical runtime analysis of the AVM with Geometric
and Lattice Search, with extended results for the original
AVM approach employing IPS (Section 4). Geometric and
Lattice Search are proved to have faster runtimes for uni-
modal fitness landscapes (Sections 5.1 and 5.2).

3. An empirical analysis of the AVM, comparing IPS, Geomet-
ric and Lattice Search on four programs, including unimodal
and non-unimodal functions, complementing our theoretical
results on unimodal functions and providing additional evi-
dence that our local searches also speed up search on non-
unimodal functions, possibly due to their faster convergence
to local optima (Section 6).

We begin by giving important background to search-based test-
ing, the AVM, as well as introducing theoretical runtime analysis.



2. BACKGROUND

2.1 Representation and Fitness Function
The fitness function for covering individual program branches

is a multivariate function mf(~x) → R, that takes an input vector
~x = [ x1 x2 ... xn ], i.e. an ordered list of arguments that are passed
to a procedure. In this paper, we assume ~x can be modelled as a
sequence of integers (i.e., floating point values are permissible so
long as a finite precision is used). The fitness function measures
how “close” an input vector was to executing a target branch. It
is minimised by the search, with a zero value indicating an input
that covers the branch. The fitness function has two components.
The approach level relates to the decision points in the program
appearing en route to reaching the target branch. In terms of the
program’s control dependence graph, the approach level is equal to
the number of nodes unexecuted by ~x on which the branch is tran-
sitively control dependent. The branch distance is computed from
the values of variables at predicates where control flow diverged
from the target branch. As an example, the branch distance of the
predicate x1 = x2, is given by the formula |x1 − x2| (see the sur-
vey paper by McMinn [12] for a full list of rules and formulas).
Because the maximum branch distance is not known, the normal-
ization function norm(d(~x)) = 1 − 1.001−d(~x) is used, where
d(~x) is the raw branch distance and norm(d(~x)) is the normalized
branch distance. The full fitness value is computed by normaliz-
ing the branch distance and adding it to the approach level, i.e.
mf(~x) = l(~x) + norm(d(~x)) [18].

2.2 The Alternating Variable Method (AVM)
The AVM can be viewed as a general framework that proceeds

from a random starting point in the search space, and works by
calling a local search function on each element of the input vector
in turn. That is, while the local search is performing “moves” on
one component of the vector, the values for all other dimensions
remain fixed. If, during this search, a fitness of zero is found, the
AVM terminates with the branch-covering input. If, however, a
local optimum is reached, the AVM advances to the next element.
If fitness cannot be improved after cycling through all elements, the
AVM restarts from another randomly-generated input, continuing
the search for a branch-covering input until the number of fitness
function evaluations exceeds a predefined maximum.

Algorithm 1 describes the AVM framework more formally. The
algorithm transforms the multivariate fitness function mf into a one
dimensional projection f (line 4). The function f is equivalent to
evaluating mf with an input vector where all components except
xi are set to constants and xi is substituted by the free parame-
ter x. The function f is passed to a local search algorithm called
local_search, along with xi, the starting point for the search. The
fitness function keeps track of the number of fitness evaluations,
maintaining a mapping of previously evaluated vectors to their cor-
responding fitness values. Once a branching-covering input vector
is found, or when the number of evaluations exceeds the maximum
(i.e., the search has failed), an exception is raised to terminate the
search (not shown in our algorithms for space and simplicity).

2.3 Runtime Analysis
Runtime analysis has established itself as a leading theory in ran-

domised search heuristics, with many new results in the last 10–15
years [16, 3]. Problems studied in search-based software engineer-
ing include computing input-output sequences [9, 10], test input
generation [2], and project scheduling [14].

Arcuri, Lehre, and Yao [2] were the first to present an runtime
analysis of search-based input generation. They focussed on the

Algorithm 1 The AVM Framework
1: while true do
2: let ~x := random(), i = 1, c = 0
3: while c < size(~x) do
4: let f : mf 7→ mf((~x \ xi) ∪ {x})
5: let ~x′ := local_search(f, xi)

6: if mf(~x′) < mf(~x) then
7: let ~x := ~x′, c := 0
8: else
9: let c := c+ 1

10: let i := i mod (size(~x)) + 1

triangle classification problem, which involves three integer vari-
ables describing side lengths of a potential triangle. The task is to
classify the input as a scalene, equilateral, or isosceles triangle, or
not representing a triangle. Their analysis was limited to the time
for covering the equilateral branch of the problem. If the range
contains n numbers, the expected time of random search is Θ(n2).
Hill climbing needs expected time Θ(n), i. e., in every iteration a
single variable is increased or decreased by 1. For the AVM they
proved an upper bound of O((logn)2) and a weaker lower bound
of Ω(logn) [2].

Later on, Arcuri [1] extended the analysis of the AVM to all
branches of the triangle classification problem, showing that the ex-
pected running time is bounded from above by O((logn)2) on all
branches. Branches with many global optima only need O(logn)
time. In this paper we extend his results by proving an upper bound
of O((logn)2) for all strictly unimodal functions (and functions
with further global optima).

3. PRELIMINARIES
A function f is called strictly unimodal if it only has a single

local optimum. If f is to be minimised (the case of maximisation
is symmetric) this means that

f(`1) > f(`2) > f(opt) < f(r1) < f(r2)

for all `1 < `2 < opt < r1 < r2, where opt is the global mini-
mum of f . In other words, if D is the domain of f , f is strictly de-
creasing onD∩(−∞, opt] and strictly increasing onD∩[opt,∞).

We consider the running time of local searches used within the
framework of AVM. Thereby we count the number of function eval-
uations or fitness evaluations made by local search until an opti-
mum is found for the first time. The motivation for considering
fitness evaluations is that such an evaluation is the most costly
operation as it involves simulating the program. In some cases
we count unique fitness evaluations, i. e., the number of different
search points evaluated. This reflects the fact that it is easy to cache
past evaluations, so evaluating the same point twice only incurs in-
significant additional cost.

In our analyses we consider minimising a function f : D → R
for a finite domain D ⊂ Z. For ease of presentation, we as-
sume f(x) = ∞ for all x /∈ D. This includes settings where f
is the branch distance before or after normalisation. The precise
choice of a normalisation function is irrelevant in our work; all lo-
cal searches analysed in this work only use information about the
ranks of search points. So every strictly increasing normalisation
function leads to the same sequences of search points queried and
hence the same performance.

In previous work [1, 2] the authors derived performance re-
sults with regard to the size n of the domain, e. g., {1, . . . , n} or
{−n/2 + 1, . . . , n/2}. Here we consider the initial distance d to
the optimum instead, as this distance governs the running time of
all local searches considered in this work. As d ≤ n upper running
time bounds using d are generally stronger than those using n.



4. ANALYSIS OF THE ORIGINAL AVM

4.1 Original AVM with IPS
The original AVM due to Korel [8] uses the following local

search, shown in Algorithm 2, that we name Iterated Pattern Search
(IPS). Starting at x, IPS first evaluates points x − 1 and x + 1 to
identify a gradient. Unless x is a local optimum, it then performs
a so-called pattern search, moving in the direction of decreasing
f -values. The step size doubles with each step, so when the gradi-
ent is towards increasing indices IPS traverses the points

x, x+ 1, x+ 1 + 2, x+ 1 + 2 + 4, . . . , x+ 1 + 2 + 4 + · · ·+ 2j .

Since
∑j

i=0 2j = 2j+1 − 1 this sequence is equal to

x, x+ 21 − 1, x+ 22 − 1, x+ 23 − 1, . . . , x+ 2j+1 − 1.

Pattern search stops if the next point does not improve the fitness,
which happens on unimodal functions when the optimum is being
overshot. This process is iterated; that is, IPS then starts another
exploration. If the function is unimodal, IPS gets close to the op-
timum over time. However, this line search can be relatively slow.
The reason is that IPS accelerates during exploration, but after over-
shooting the optimum IPS starts from scratch.

Algorithm 2 Iterated Pattern Search, starting at x ∈ D
1: while true do
2: if f(x− 1) ≥ f(x) and f(x+ 1) ≥ f(x) return x
3: if f(x− 1) < f(x+ 1) then let k := −1 else let k := 1
4: while f(x+ k) < f(x) do
5: let x := x+ k, k := 2k

4.2 Upper Bound for Original AVM
We start our investigations with Iterated Pattern Search, the local

search used in the original AVM [8]. An upper bound O(log2 n)
(for domain size n) was proven for AVM with IPS in [2], for the
special case that there is a linear relationship between the function
value and the distance to the optimum. The following statement
holds for arbitrary strictly unimodal functions.

THEOREM 1. Consider iterated pattern search on a strictly
unimodal function f where d denotes the initial distance from the
starting point to the optimum. Then IPS finds an optimum after
querying at most 4 + 8 log d + (log d)2 values. This also holds
for functions f that result from a strictly unimodal function f ′ and
assigning function values arg min(f ′) to further points.
The last statement implies that we get an upper bound of or-
derO((log d)2) for many further common functions. Examples are
functions where opt is a global optimum and all points x > opt or
x < opt are global optima as well. In particular, all functions con-
sidered in Arcuri’s work [1] are covered by this statement. How-
ever, for functions with many global optima the upper bound may
not be tight [1].

Proof of Theorem 1. We allow the algorithm to traverse points out-
side of D, but assume that all x′ /∈ D are worse than all x ∈ D.

We consider passes of IPS, corresponding to one iteration of the
outer while loop in Algorithm 2: a pass starts with an exploratory
search examining the two neighbouring solutions of the current
point (index ±1). It then performs a pattern search, doubling the
distance travelled in each step. Note that a pass starting with the
optimum makes exactly 3 queries. If a pass queries points up to a
distance of

∑i
j=0 2j = 2i+1 − 1 from the initial value, it queries

i+ 3 values.
Without loss of generality assume that the current position is

0 and the optimum is at d. If d = 1 we need 4 queries, hence

we assume in the following that d ≥ 2. We claim that within at
most 2 passes the distance to the optimum has been reduced to at
most bd/2c. Let i be the unique integer such that 2i − 1 ≤ d <
2i+1 − 1. Note that pattern search queries 2i − 1 and 2i+1 − 1
as the points are strictly improving in [0, 2i − 1]. We consider two
cases. First assume that 2i−1 is better than 2i+1−1. Then pattern
search stops at 2i − 1 and since d ≤ 2i+1 − 2 the new distance to
the optimum is at most bd/2c. The number of queries made is at
most i+3, and since d ≥ 2i−1 ≥ 2i−1 this is at most blog dc+4.

Now consider the case that 2i − 1 is worse than 2i+1 − 1. This
implies 2i ≤ d ≤ 2i+1−2. Then pattern search will query 2i+2−1
and stop at 2i+1−1 as 2i+2−1 is worse than 2i+1−1. The second
pass will traverse positions 2i+1 − 21, 2i+1 − 22, 2i+1 − 23 . . . .
Since by unimodality all points in [0, 2i] are increasingly better,
pattern search will stop at some 2i+1 − 2j with 0 ≤ j ≤ i. As the
optimum must be within [max(2i, 2i+1−2j+1), 2i+1−2j−1], and
the new current point is 2i+1−2j , the distance between the current
point and the optimum has decreased to at most 2j for j < i and
2i−1 for j = i. In both cases the new distance is bounded by bd/2c.

In the worst case, we need one pass querying up to i+ 4 values,
and a second pass querying up to i+3 points. The total is 2i+7 ≤
2blog dc+ 7 as d ≥ 2i.

The total number of queries made, T (d), is then subject to
the following recurrence: T (0) = 3, T (1) = 4, and T (d) ≤
2blog dc+ 7 + T (bd/2c) for d > 1. Due to all floor functions, we
get the same recurrence for T (d) as for T (2blog dc). Solving the
latter gives

T (d) ≤
blog dc∑
k=1

(2k + 7) + T (1)

≤ 7blog dc+ 2 · blog dc(blog dc+ 1)

2
+ T (1)

≤ 4 + 8 log d+ (log d)2.

The last remark of the statement holds true since adding further
global optima can only decrease the expected time until some
global optimum is found.

4.3 Original AVM is Slow in the Worst Case
The following result shows that the lower bound from Theo-

rem 1 is asymptotically tight. Both bounds together show that the
worst-case running time of IPS is of order Θ((log d)2), when initial
points up to distance d are allowed.

THEOREM 2. Consider iterated pattern search minimising an
arbitrary unimodal function f . If there are feasible starting points
with distances 0, 1, . . . , d to the optimum, the worst case number
of unique fitness evaluations is at least

(log d)2

10
−O(log d).

Proof. We can assume w. l. o. g. that the optimum is at position 0.
If the domain D is bounded on one side, we consider an extended
function f ′ where the domain is Z and f(x) =∞ for all x /∈ D.

Define Ts(`, r) as the number of different search points eval-
uated when IPS starts in s, counting evaluations from the set
{`, . . . , r} only. If s /∈ D we let Ts(`, r) := ∞. Let T (`, r) :=
min{T`(`, r), Tr(`, r)} be the fastest time starting from ` or r.

Define `0 = r0 = 0 and T (`0, r0) = 1. Assume we have
`i ≤ 0 ≤ ri for some i ∈ N0, such that `i and ri are not both
outside f ’s domain. Let ∆i := 2blog(ri−`i)c+1 for i ∈ N and
∆0 := 1 be the smallest power of 2 such that ∆i > ri − `i.



We define new points `i+1, ri+1 according to the following case
distinction. First assume f(`i) > f(ri), which implies f(x) >
f(ri) for all x ≤ `i. It also implies that ri exists. Let ri+1 :=
ri + ∆i− 1 and `i+1 := ri− 2∆i + 1. If IPS starts at ri+1, it will
sample points at

ri+1, ri+1 − (21 − 1), . . . , ri+1 − (2log(∆i) − 1) = ri, ri −∆i

and since the fitness improves in every step but the last one, IPS will
stop at ri and restart exploration from there. All points but ri−∆i

are guaranteed to exist and are contained in {`i+1, . . . , ri+1}; so
IPS evaluates ∆i + 1 different search points from that set before
restarting exploration. From ri IPS needs time at least T (`i, ri)−1
since so far IPS has evaluated a single search point from the set
{`i, . . . , ri}, namely ri. We thus have established the recurrence

T`i+1(`i+1, ri+1) ≥ ∆i + T (`i, ri). (1)

Similarly, if `i+1 exists and IPS starts from there, it will sample
points at

`i+1, `i+1+21−1, . . . , `i+1+2log(∆i)−1 = ri−∆i, ri, ri+2∆i.

The fitness improves in each step but the last one, and so IPS will
stop at ri and start exploration from there. Not counting the eval-
uation of ri + 2∆i, IPS evaluates ∆i + 2 search points, hence as
above we get

Tri+1(`i+1, ri+1) ≥ ∆i + T (`i, ri) + 1. (2)

Putting (1) and (2) together, we have shown

T (`i+1, ri+1) ≥ ∆i + T (`i, ri).

This also holds when `i+1 /∈ D as then T`i+1(`i, ri) = ∞. The
case f(`i) < f(ri) is symmetric, and if f(`i) = f(ri) we also get
the same recurrence as IPS stops at ri as in the case f(`i) > f(ri)
when starting from `i+1 and IPS stops at `i as on the other case
when starting from ri+1.

It follows that

T (`i, ri) ≥
i−1∑
j=1

∆j + T (`0, r0) ≥ 1 +

i−1∑
j=1

log(rj − `j).

Note that for i ≥ 1 the difference ri+1 − `i+1 does not depend on
whether f(`i) > f(ri) or not, hence w. l. o. g. we use the definition
of `i+1, ri+1 from the case f(`i) > f(ri). Along with ∆i ≥
ri − `i + 1 we get

ri+1−`i+1 = ri+∆i−1−(ri−2∆i+1) = 3∆i−2 > 3(ri−`i).

Expanding and using `1 − r1 = 2 yields

ri+1 − `i+1 > 2 · 3i.

Thus,

T (`i, ri) ≥ 1 +

i−1∑
j=1

log(2 · 3j−1)

= i+

i−2∑
j=0

log(3j)

= i+ log(3) · (i− 2)(i− 1)

2
>

log(3)

2
· i2 −O(i).

It is easy to verify by induction that ri ≤ 7i−1 and |`i| ≤ 7i−1 for
all i ∈ N. Putting i := blog7(d)c+ 1 then gives a lower bound of

log(3)

2
· (log7(2))2 · (log d)2−O(log d) >

(log d)2

10
−O(log d).

4.4 Original AVM is Slow on Average
The bad worst-case performance of IPS is not simply due to few

unlucky choices of the initial point. In fact, most starting points
lead to a running time of order Θ((log d)2). For the specific func-
tion f(x) = |x| we show that when the target is chosen such that
the distance between starting point and target is uniform in some
interval, then we still get a lower bound of order (log d)2.

Note that f(x) = |x| is quite an easy function as points closer
to the optimum 0 are better than points that are further away from
it. This encourages IPS to stop at the closest point to the optimum
traversed in a pattern search, but we still get a time of Ω((log d)2).

THEOREM 3. Consider iterated pattern search minimising the
function f(x) = |x| such that the target is chosen uniformly at
random from {−2i, . . . , 2i − 1}, for some i ∈ N0. The expected
number of unique fitness evaluations is at least i2

6
.

Proof. Let T (i) denote the expected number of different search
points queried when the target is chosen uniformly at random from
{−2i, . . . , 2i − 1}. The claim T (i) ≥ i2/6 is trivial for i = 0 and
i = 1.

If IPS starts at some value x < 0 (the case x > 0 is symmetric),
IPS will start a pattern search exploring points with higher indices,
querying points at x1 := x + 20, x2 := x + 20 + 21, x3 := x +
20 + 21 + 22, etc. (We do not count a potential evaluation of the
point at x− 1 since it might not be in the domain of feasible search
points.) Let xj := x+

∑j−1
`=0 2` = x+2j−1 for 1 ≤ j ≤ i be the

first search point queried where xj ≥ 0. Now IPS will stop pattern
search and continue with either xj−1 or xj , depending on which is
better. If xj is better, IPS will also query xj+1; but as this might be
out of range, we do not count a potential evaluation of xj+1.

Due to the fitness function used, the point with the smaller ab-
solute value from either xj−1 or xj is better. Note that their index
difference is xj − xj−1 = 2j−1, so xj ∈ {0, . . . , 2j−1 − 1}. If
xj ∈ {0, . . . , 2j−2 − 1}, xj is better than xj−1, and IPS starts an-
other pass at {0, . . . , 2j−2− 1}. Otherwise, xj−1 is better and IPS
will start another pass at {−2j−2,−2j−2 + 1, . . . ,−1}. All these
positions are attained with the same probability, hence we are in the
same setting as described in the statement, with j − 2 in place of i.

The probability of stopping at xj being the first point where
xj ≥ 0 (xj ≤ 0 when starting at x > 0), for 1 ≤ j ≤ i, is
2 · 2j−1/2i+1 = 2j−i−1 as there are xj − xj−1 = 2j−1 posi-
tions for x where this happens when x < 0 and the same holds
for x > 0. Recall that all initial positions are chosen uniformly at
random, and there are 2i+1 feasible positions.

While getting to xj IPS has queried at least j + 1 mutually dif-
ferent points x, x1, . . . , xj . Then the remaining time is at least
T (j − 2) − 1; the reason for subtracting 1 is that we have already
queried xj . Defining T (−1) := 0, we have established the follow-
ing recurrence

T (i) ≥
i∑

j=1

2j−i−1 · (j + 1 + T (j − 2)− 1)

=

i∑
j=1

j · 2j−i−1 +

i∑
j=1

2j−i−1 · T (j − 2)

=

i−1∑
j=0

(j + 1) · 2j−i +

i−2∑
j=0

2j−i+1 · T (j)

= i− 1 + 2−i +

i−2∑
j=0

2j−i+1 · T (j)

having used
∑i−1

j=0(j + 1) · 2j−i = i− 1 + 2−i.



Assume for an induction that T (j) ≥ j2/6 all 0 ≤ j < i. Then

T (i) ≥ i− 1 + 2−i +

i−1∑
j=0

2j−i · j
2

6

= i− 1 + 2−i +
1

6
·
i−1∑
j=0

2j−i · j2

= i− 1 + 2−i +
1

6
· (−4i+ 6 + i2 − 6 · 2−i)

=
i2

6
+
i

3

which implies the claim.

5. NEW LOCAL SEARCHES FOR THE AVM
We now show that other local searches used in the frame-

work provided by AVM only require Θ(log d) evaluations instead
of Θ((log d)2). This yields significant speedups over AVM’s origi-
nal local search method IPS, if the initial distance d to the optimum
is not very small.

Our results formally only hold for unimodal functions, but they
also indicate more generally that our new local searches converge
faster to local optima. The reason is that the basin of attraction
around a local optimum has the properties of a unimodal function.
So, our analysis is partly applicable in a much wider context; ex-
ploring this further is left for future work.

5.1 AVM with Geometric Search
We propose more clever local searches that locate the optimum

of a unimodal function more efficiently after the first exploration.
The following Geometric Search uses a variant of binary search.
The idea is to perform a pattern search, and then to use binary
search to home in on the target. We will see that then the optimum
of any unimodal function is found in time logarithmic in the initial
distance. We call it “Geometric Search” since the initial pattern
search is performed with a geometric sequence of numbers.

Algorithm 3 Geometric search, starting at x ∈ D
1: if f(x− 1) ≥ f(x) and f(x+ 1) ≥ f(x) return x
2: if f(x− 1) < f(x+ 1) then let k := −1 else let k := 1
3: while f(x+ k) < f(x) do
4: let x := x+ k, k := 2k
5: let ` := min(x− k/2, x+ k), r := max(x− k/2, x+ k)
6: while ` 6= r do
7: if f(b(`+ r)/2c) < f(b(`+ r)/2c+ 1) then
8: r := b(`+ r)/2c
9: else

10: ` := b(`+ r)/2c+ 1
11: return `

Geometric Search uses the same “geometric” pattern search
as IPS, but afterwards uses a variant of binary search to narrow
down the optimum. Thereby we are using that if pattern search
queries search points xj−1, xj , xj+1, stopping at xj , we know that
f(xj−1) > f(xj) ≤ f(xj+1). This implies that, if f is unimodal,
the global minimum must lie in the set {xj−1, . . . , xj+1}.

THEOREM 4. Consider a one-dimensional search on a uni-
modal function where d denotes the initial distance from the start-
ing point to the optimum. Then Geometric Search finds an optimum
after querying at most 3 log d+ 5 search points.

Proof. Let i be such that 2i ≤ d < 2i+1. By the same arguments
as in the proof of Theorem 1 pattern search stops at either 2i − 1

or 2i+1 − 1 after querying at most i+ 3 points. We pessimistically
assume that it stops at 2i+1 − 1, which results in the algorithm
putting ` := 2i−1 and r := 2i+2−1. We claim that each iteration
of binary search updates `, r towards `′, r′ such that r′ − `′ ≤
b(r − `)/2c. If r′ = b(`+ r)/2c we have

r′ − `′ =

⌊
`+ r

2

⌋
− ` =

⌊
r − `

2

⌋
.

Otherwise, `′ =
⌊
`+r

2

⌋
+1 and using−bxc−1 ≤ b−xc for x ∈ R

we get

r′ − `′ = r −
⌊
`+ r

2

⌋
− 1 ≤ r +

⌊
− `+ r

2

⌋
=

⌊
r − `

2

⌋
.

Initially r − ` < 2i+2, and due to the floor functions we get the
same recurrence as for 2i+1. Two queries are needed to replace
the current distance by its floored half, ending at 0 with no further
queries. Hence we need an additional amount of 2i + 2 queries,
leading to a total of 3i+ 5 ≤ 3 log d+ 5 queries.

5.2 AVM with Lattice Search
Lattice Search [15] is a refinement of Fibonacci Search [7] for

integer domains. It can find the minimum of a unimodal function
on a domain of integers {1, . . . , Fn−1} using n−2 function eval-
uations [15, page 190], where Fn is the n-th Fibonacci number:
F1 = 1, F2 = 1, and Fn+2 = Fn + Fn+1 for n ∈ N (Mon-
ahan [15, page 190] uses the definition F0 = 1, F1 = 1, F2 =
2 . . . ). Search points are evaluated according to Fibonacci num-
bers in such a way that only one new search points needs to be
evaluated in each iteration. This makes Lattice Search faster than
Geometric Search.

Our local search using Lattice Search is as follows.

Algorithm 4 Lattice search, starting at x ∈ D
1: if f(x− 1) ≥ f(x) and f(x+ 1) ≥ f(x) return x
2: if f(x− 1) < f(x+ 1) then let k := −1 else let k := 1
3: while f(x+ k) < f(x) do
4: let x := x+ k, k := 2k
5: let ` := min(x− k/2, x+ k), r := max(x− k/2, x+ k)
6: let n := min{n | Fn ≥ r − l + 2}
7: while n 6= 3 do
8: if `+ Fn−1 − 1 ≤ r and f(`+ Fn−2 − 1) ≥ f(`+ Fn−1 − 1)

then
9: let ` := `+ Fn−2

10: let n := n− 1
11: return `

Note that the initial pattern search is done in a geometric fashion,
i.e., increasing the step size geometrically as in IPS and Geomet-
ric Search. There is a related search technique called Fibonaccian
Searching [4] (not to be confused with Fibonacci Search) where
pattern search is done by means of Fibonacci numbers. The rea-
son that we are using geometric pattern search is that it is generally
faster.

Lattice Search further improves the leading constant preceding
the log d term; using Fibonacci numbers to search for the optimum
in the interval identified by pattern search is more efficient than the
binary search used in our Geometric Search procedure.

THEOREM 5. Consider a one-dimensional search on a uni-
modal function where d denotes the initial distance from the start-
ing point to the optimum. Then Lattice Search finds an optimum
after querying at most 2.45 log d+O(1) search points.

Due to space restrictions, we omit the proof. It follows from pre-
vious arguments, the analysis of Lattice Search [15, page 190] and



rewriting the following closed formula for Fibonacci numbers:

Fn =
(1 +

√
5)n − (1−

√
5)n

2n ·
√

5
.

6. EMPIRICAL EXPERIMENTS
We now provide an empirical comparison of AVM using our dif-

ferent local searches to complement our theoretical results. We first
show results on a simple function, designed to provide empirically
confirmation of our proofs on a unimodal function, and actual dif-
ferences in performance in practice. However, real-world programs
are not so straightforward, involving fitness landscapes of varying
shapes. Therefore, following an initial simple experiment, we con-
tinue onto performing experiments with four real-world programs.

6.1 Experiments with “is_zero” (f(x) = |x|)
We first study a simple and illustrative problem with just a single

variable, as shown in the following program below:
void is_zero(int x) {
if (x == 0) { /* TARGET BRANCH */ }

}

The goal is to find an input x that is equal to zero. The ap-
proach level is zero (since the branch is always reached), and the
branch distance is norm(|x|). Because our local searches do not
rely on comparing absolute values, but instead their corresponding
ranks, this problem is equivalent to minimizing the fitness func-
tion f(x) = |x| (where the branch distance is not normalised) as
analysed in Theorem 3.

Studying this simple program allows us to isolate the impact of
the range and the initial distance d from the optimum on the running
time of AVM. Our theoretical results show that, when the starting
point is chosen uniformly at random from a set {−d, . . . , d − 1}
for d a power of 2, AVM with IPS will take Θ((log d)2) steps
whereas AVM with Geometric Search or Lattice Search will suc-
ceed in only Θ(log d) steps.

The performance of IPS, Geometric and Lattice in optimising the
objective function, f(x) = |x| was measured over the following
ranges [−d, d− 1], where d ∈ {1, 2, 4, 8, . . . 231}. For each range
100 runs of each local search were performed and the number of
fitness evaluations to find the global optimum at 0 was counted. In
each run the starting position, x1 was chosen uniformly at random
from the corresponding range (including boundaries).

For each range the runtime distributions of the local searches
were compared in a pairwise manner using the Mann-Whitney U
test. In addition to p-values, the non-parametric Vargha-Delaney
statistic Â12 [17], which is computed from mean ranks, is reported
as a measure of effect size. It is possible to interpret Â12 as the
probability that a run of the first search algorithm takes a larger
number of fitness evaluations compared to that of the second search
algorithm. The implication is that if Â12 < 0.5, then the first
local search performs better overall whereas the opposite is true
if Â12 > 0.5. Also, depending whether the absolute difference:
|Â12 − 0.5| is > 0.21, > 0.14, > 0.06 or ≤ 0.06, the correspond-
ing effect size can be divided into the following categories: large,
medium, small and negligible.

The results show that for all ranges where d ≥ 2048, IPS is
worse than Geometric (p ≤ 0.0054 and Â12 ≥ 0.61) and also
worse than Lattice (p ≤ 4.1 · 10−8 and Â12 ≥ 0.72). It was
also found that for the same ranges Geometric is worse than Lattice
(p ≤ 7.9 · 10−8 and Â12 ≥ 0.72).

Figure 1 shows how the average performance of each local
search scales with increasing domain size. Here the variable, i is
related to the logarithm of the distance, i. e. i = log2(d).

0 5 10 15 20 25 30
0

50

100

150

200

i

M
ea

n
no

.fi
tn

es
s

ev
al

ua
tio

ns

Random
IPS
Geometric
Lattice

Figure 1: Mean number of fitness evaluations for optimis-
ing f(x) = |x| with various local searches. The domain is cho-
sen as {−2i, . . . , 2i − 1} for i ∈ {0, . . . , 31}.

−1,024 −512 −256 0 256 512 1,023
0

10

20

30

40

Starting position, x1

N
o.

fit
ne

ss
ev

al
ua

tio
ns

Figure 2: Number of fitness evaluations for optimising f(x) =
|x| with IPS for each starting position, x1 ∈ [−1024, 1023].

The empirical results agree with our theoretical results as one can
clearly see a different scaling behaviour between IPS and our two
new local searches, Geometric and Lattice. For small d the perfor-
mance is similar, but as d grows the differences become obvious.

A second order polynomial was fit to the average run-
ning times of IPS using a weighted non-linear regression
and then the χ2 test was used to assess the goodness
of fit. The equation of the fitted curve is as follows:
T (i) = 1.5189 + 0.717115 · i+ 0.169623 · i2, where T is the
mean number of fitness evaluations. Note that the leading con-
stant 0.169623 almost exactly matches the constant 1/6 =
0.166666 . . . from Theorem 3. For the fit, the obtained value of χ2

is 27.6887 and the number of degrees of freedom is 32 − 3 = 29.
Since P (χ2 > 27.6887) = 0.5345, it suggested that the fit is of
high quality and explains the experimental results very well.

In Figure 2 we additionally show how the performance of iter-
ated pattern search depends on the precise choice of the starting
point. The performance is symmetric around 0 (modulo tiny differ-
ences in tie-breaking) and the pattern looks like a fractal structure.



This reflects the recursive nature of IPS, which also became visible
in the recurrence arguments used in our proofs from Section 4. In
accordance with our average-case analysis from Theorem 3, many
starting points lead to rather high running times.

6.2 Experiments with Real-World Test Objects
In order to compare the performance of the local searches in

a practical setting, we implemented our new AVM searches into
and conducted our experiments with the IGUANA toolset [13],
and selected four test objects, details of which are shown in Ta-
ble 1. Each test object is written in C, and its source code was
automatically instrumented by IGUANA for the purposes of col-
lecting fitness information. The clip_to_circle function is from
the graphical front-end of the SPICE electronic circuit simulator.
The functions gimp_rgb_to_hsv_int and gimp_hsv_to_rgb_int are
colour space converters from the GIMP image editor. Finally, vali-
date_card is an implementation of the Luhn algorithm for checking
16 digit credit card numbers. Each test object consists of nested
control structures in the form of if statements, switch statements
and loops. IGUANA creates a pair of true and false branches when
it detects that control flow diverges in the source code of a C func-
tion. Because there can be multiple pairs of branches in a single
test object, each pair is labelled numerically.

In the experiments each local search was applied to each branch
and the number of unique fitness evaluations needed to cover each
branch was counted. This process was repeated 100 times with a
different seed being used to initialize the random number gener-
ator in each run. For practical reasons the maximum number of
fitness evaluations to cover any one branch was capped at 100,000.
For each branch pairwise comparisons of the runtime distributions
corresponding to different local searches were performed using the
Mann-Whitney U test. The results including raw p-values and non-
parametric effect sizes, Â12, are shown in Table 2.

Only branches where random search performed notably worse
than at least one of the local searches (i. e. p < 0.05 (significant)
and Â12 > 0.56 (at least small effect size)) are considered. The
purpose of filtering was to remove branches that are covered easily
by any search as there is no reason to design a better algorithm
for these branches. Similarly, there were 11 branches which were
either infeasible (i. e. no inputs from the input domain execute it)
or so hard that none of the tested algorithms found an optimum. In
total, 24 out of 82 branches satisfied the selection criteria.

We used a sampling approach to investigate how many fitness
landscapes presented to a local searcher are unimodal (details are
omitted due to a lack of space). Across all branches listed in Ta-
ble 2, 13% of landscapes were strictly unimodal and 62% had a
similar property: all local optima were also global optima. Only
25% of all sampled settings contained local optima, which were
not globally optimal; almost all of these belonged to SPICE.

For 14 out of the 24 branches, both Geometric and Lattice per-
form better than IPS. There were in total 16 branches where Geo-
metric or Lattice were significantly better than IPS, and on 12 of
these the effect size was medium or large. In a similar way it is ob-
served that Lattice generally outperforms Geometric, however the
effect sizes for such comparisons are typically smaller. Another
important result is that the difference in runtime performance be-
tween two local search algorithms varies according to the specific
branch. On some branches all local searches appear to perform
equally well, whereas on other branches one local search is clearly
better than another.

The largest improvements were observed with the clip_to_circle
function (from the SPICE project). For the other functions, how-
ever, branches were covered relatively quickly regardless of the

Table 1: Details of the test objects used in the experiments

Function name No. of branches Inputs and Ranges

clip_to_circle 42 {x1 . . . x7} ∈ [−231, 231 − 1]
gimp_rgb_to_hsv_int 14 {x1 . . . x3} ∈ [0, 255]
gimp_hsv_to_rgb_int 16 x1 ∈ [0, 360], {x2, x3} ∈ [0, 255]
validate_card 10 {x1 . . . x16} ∈ [0, 9]

local search used, leading to a difference of only one or two evalu-
ations on average. This is likely due to their function’s small input
domain size (see Table 1). While results for these functions were
significant, the difference in runtime from a practical standpoint is
almost negligible. There are also branches where significant differ-
ences between the runtime distributions of local searches exist but
the calculated effect sizes are marginally small. Because no correc-
tion was made for multiple comparisons, it is likely that a few of
the “less significant” results are false positives.

Furthermore, there is one branch (namely branch 14T of the
gimp_rgb_to_hsv_int test object) in which IPS performs far better
than both Geometric and Lattice. It is clear that this branch is diffi-
cult to cover because it was the only branch in all test cases which
local searches failed to cover within the allowed number of fitness
evaluations. The success rates for this branch are 0% for Random,
93% for IPS, 6% for Geometric and 2% for Lattice. Additional
experiments with 10 runs per search and without a limitation on
the maximum number of fitness evaluations gave the median num-
ber of fitness evaluations to achieve coverage of this branch to be
923, 862 for Geometric and 539, 127.5 for Lattice. We observed
that all searches frequently resorted to restarting, with Geometric
and Lattice only able to hit the target when a restart produces a so-
lution with at least 2 out of 3 variables already optimised by chance.
We found that the fitness landscape of the branch contains several
plateaux, and IPS seems to perform better on this branch because
it has a higher tendency to explore these plateaux. Further inves-
tigations with this branch and the Wegener Genetic Algorithm [6,
18] revealed the GA was much more efficient at finding a solu-
tion, requiring only 4, 795 evaluations as a mean average (median
= 4633.5), compared to approximately 31, 000 for the AVM with
IPS. This is a significant result (p = 7.9 × 10−18), with a large
effect size (Â12 = 0.85). This result fits with those from previ-
ous studies in search-based test input generation, where the AVM
works most efficiently for simple fitness landscapes with “obvious”
optima, whereas diversifying GAs are more efficient at navigating
less smooth landscapes generated by more difficult branches [6].

6.3 Threats to Validity
We briefly consider some threats to validity associated with our

study. From the point of view of external threats, the test objects
in our experiments may not generalise in practice, however, care
was taken to select them from real-world open source examples.
These examples go beyond the bounds of our theory, but still show
positive results in the majority of cases. From the point of view
of internal threats, possible errors come from our implementation
of the techniques. However, as shown with the simple and con-
trolled is_zero example, empirical results closely matched those
expected from our theoretical observations. Furthermore we used
non-parametric statistical tests to analyse our results, i.e. the Mann-
Whitney U test and the Vargha-Delaney Â12 statistic, both of which
do not have assumptions regarding normality of the sample means,
avoiding a further potential source of error from our analysis.

7. CONCLUSIONS AND FUTURE WORK
We have analysed the performance of the original AVM incor-

porating Iterated Pattern Search (IPS), proposing to replace the



Table 2: Results of test case experiments. The p-values formatted in bold indicate significance at the 0.05 level. Similarly, effect sizes
that are large, medium, small and negligible are distinguished by bold, underlined, italic and normal formatting respectively.

Median no. of fitness evaluations IPS v Geometric IPS v Lattice Geometric v Lattice
Function Branch IPS Geometric Lattice p-value Â12 p-value Â12 p-value Â12

clip_to_circle 7F 401.5 181.0 150.5 1.1 × 10−12 0.79 5.1 × 10−17 0.84 5.8 × 10−6 0.69
10F 408.0 184.0 155.5 3.0 × 10−11 0.77 3.0 × 10−19 0.87 3.0 × 10−9 0.74
55T 1515.0 1296.0 1098.0 2.4 × 10−2 0.59 4.1 × 10−3 0.62 4.2× 10−1 0.53
55F 552.5 303.5 271.0 9.9 × 10−9 0.73 6.1 × 10−11 0.77 1.6× 10−1 0.56
57F 550.5 361.0 295.0 1.5 × 10−5 0.68 9.1 × 10−10 0.75 1.7 × 10−2 0.60
61T 484.5 267.5 209.0 3.5 × 10−10 0.76 1.8 × 10−12 0.79 6.9× 10−2 0.57
66T 544.0 287.0 288.0 2.2 × 10−5 0.67 3.6 × 10−6 0.69 7.7× 10−1 0.51
68T 2455.0 1535.5 1307.5 1.4 × 10−3 0.63 5.4 × 10−6 0.69 2.0× 10−1 0.55
68F 833.0 422.5 423.0 1.9 × 10−5 0.68 2.0 × 10−5 0.67 7.3× 10−1 0.49
70F 710.5 523.0 427.0 2.8 × 10−2 0.59 1.7 × 10−4 0.65 9.2× 10−2 0.57
74T 736.0 450.5 343.0 9.0 × 10−4 0.64 4.2 × 10−6 0.69 9.6× 10−2 0.57

gimp_rgb_to_hsv_int 14T 31779.0 >100000.0 >100000.0 2.2 × 10−31 0.05 2.7 × 10−34 0.04 1.5× 10−1 0.48
17T 36.0 34.5 33.0 5.1× 10−1 0.53 2.2× 10−1 0.55 3.4× 10−1 0.54

gimp_hsv_to_rgb_int 4T 21.5 23.0 19.0 8.5× 10−1 0.49 3.2 × 10−4 0.65 6.4 × 10−10 0.75
11T 21.0 22.0 16.0 4.8× 10−1 0.53 1.3 × 10−11 0.78 2.2 × 10−17 0.85

validate_card 5F 6.0 5.0 5.0 6.2× 10−1 0.52 5.9× 10−1 0.52 9.3× 10−1 0.50
7T 6.5 6.0 6.0 1.7× 10−1 0.56 5.5× 10−1 0.52 4.8× 10−1 0.47
7F 6.0 5.0 6.0 2.7 × 10−2 0.59 4.9× 10−1 0.53 1.5× 10−1 0.44
9T 6.5 5.5 5.5 9.7 × 10−3 0.61 6.1× 10−1 0.52 8.1× 10−2 0.43
9F 7.0 5.0 5.0 2.7 × 10−4 0.65 4.0 × 10−3 0.62 4.5× 10−1 0.47

11T 6.0 5.5 6.0 9.6× 10−1 0.50 8.7× 10−1 0.49 6.8× 10−1 0.48
11F 5.0 6.0 6.0 4.2× 10−1 0.47 1.1× 10−1 0.44 5.5× 10−1 0.48
14T 13.0 13.0 13.5 9.5× 10−1 0.50 2.7× 10−1 0.46 2.0× 10−1 0.45
14F 7.0 6.0 6.0 1.5× 10−1 0.56 1.0× 100 0.50 2.0× 10−1 0.45

latter with faster local searches, Geometric and Lattice Search. On
strictly unimodal functions, these searches provably need less time
than IPS. IPS requires time Θ((log d)2) while our new searches
need time Θ(log d), where d is the initial distance to the opti-
mum. These theoretical results were confirmed with empirical ex-
periments optimising the easy function f(x) = |x|.

We further empirically analysed Geometric and Lattice Search
on test objects that gave rise to unimodal as well as multimodal
functions. For multimodal functions there are no non-trivial perfor-
mance guarantees for any local search; our experiments therefore
extend the realm of what can be proven theoretically. Considering
branches where any variant of AVM performed significantly bet-
ter than random search, we found that both Geometric and Lattice
performed better than IPS on a majority of branches. There was
only one particular branch where IPS performed better (probably
due to its better exploration). However, this branch was handled
more efficiently by a Genetic Algorithm, as is generally the case
for more complex landscapes. Local searches excel in simple con-
ditions, and our paper instead concentrates on improving the AVM
for these cases, which have been shown in the test input generation
literature to be very common for procedural C programs [6].

With respect to applying the results of our paper, it is not clear
what the fitness landscape looks like in advance of test input gen-
eration in practice. While further research is required to investi-
gate this problem, our new local searches for the AVM may be
used to further improve results with Memetic Algorithms (MAs)
[5, 6], which combine diversifying GA searches with intensifying
local search algorithms. Such an approach was found to provide
the “best of both worlds” for test input generation in Harman and
McMinn’s study [6]. Thus, further work is needed to investigate
the performance of our new local searches with the AVM when in-
tegrated into an MA.
Acknowledgement. This work is funded in part by the EPSRC
project “RE-COST” (grant no. EP/I010386).

8. REFERENCES
[1] A. Arcuri. Full theoretical runtime analysis of alternating variable method on

the triangle classification problem. In SSBSE, 2009.
[2] A. Arcuri, P. K. Lehre, and X. Yao. Theoretical runtime analyses of search

algorithms on the test data generation for the triangle classification problem. In
SBST, 2008.

[3] A. Auger and B. Doerr, editors. Theory of Randomized Search Heuristics –
Foundations and Recent Developments. Number 1 in Series on Theoretical
Computer Science. World Scientific, 2011.

[4] D. E. Ferguson. Fibonaccian searching. Comm. of the ACM, 3(12), 1960.
[5] G. Fraser, A. Arcuri, and P. McMinn. Test suite generation with memetic

algorithms. In GECCO, 2013.
[6] M. Harman and P. McMinn. A theoretical and empirical study of search based

testing: Local, global and hybrid search. IEEE Trans. Soft. Eng., 36(2).
[7] J. Kiefer. Sequential minimax search for a maximum. Amer. Math. Soc., 4,

1953.
[8] B. Korel. Automated software test data generation. IEEE Trans. on Soft. Eng.,

16(8), 1990.
[9] P. K. Lehre and X. Yao. Crossover can be constructive when computing unique

input-output sequences. Soft Computing, 15, 2011.
[10] P. K. Lehre and X. Yao. Runtime analysis of the (1+1) EA on computing unique

input output sequences. Information Sciences, 2013. (To appear).
[11] P. McMinn. An identification of program factors that impact crossover

performance in evolutionary test input generation for the branch coverage of C
programs. Inf. and Soft. Tech., 55(1).

[12] P. McMinn. Search-based software test data generation: A survey. Software
Testing, Verification and Reliability, 14(2).

[13] P. McMinn. IGUANA: Input generation using automated novel algorithms. a
plug and play research tool. Technical Report CS-07-14, Uni. Sheffield, 2007.

[14] L. L. Minku, D. Sudholt, and X. Yao. Evolutionary algorithms for the project
scheduling problem: Runtime analysis and improved design. In GECCO, 2012.

[15] J. F. Monahan. Numerical Methods of Statistics. Cam. Univ. Press, 2nd edition,
2011.

[16] F. Neumann and C. Witt. Bioinspired Computation in Combinatorial
Optimization – Algorithms and Their Computational Complexity. Springer,
2010.

[17] A. Vargha and H. D. Delaney. A Critique and Improvement of the CL Common
Language Effect Size Statistics of McGraw and Wong. Journal on Educational
and Behavioral Statistics, 25(2), 2000.

[18] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment for
automatic structural testing. Inf. and Soft. Tech., 43(14), 2001.


